論文(共著)が IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control に掲載されました。
論文(共著)が IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control に掲載されました。
J. Wu, Y. Mizuno, M. Tabaru, and K. Nakamura, “Ultrasonic motors with polymer-based vibrators,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 62, no. 12, pp. 2169-2178 (2015).
With their characteristics of low density and elastic moduli, polymers are promising materials for making ultrasonic motors (USMs) with high energy density. Although it has been believed for a long time that polymers are too lossy to be applied to high-amplitude vibrators, there are several new polymers that exhibit excellent vibration characteristics. First, we measure the damping coefficients of some functional polymers to explore the applicability of polymers as vibrators for USMs. Second, to investigate the vibration characteristics, we fabricate bimorph vibrators using several kinds of polymers that have low attenuation. Third, a bending mode USM is fabricated with a polymer rod and four piezoelectric plates bonded on the rod as a typical example of a USM. Through an experimental investigation of the motor performance, it was found that the polymer-based USMs exhibited higher rotation velocity than the aluminum-based USM under a light preload, although the maximum torque of the polymer-based USMs was smaller than the aluminum-based USM. Among the tested polymers, polyphenylenesulfide was a prospective material for USMs under light preloads because of the high amplitude and lightweight of polyphenylenesulfide.