常熟理工学院との共同研究の成果が Optics Express に掲載されました。
ニューラルネットワークによる信号処理を用いてブリルアン光相関領域反射計の測定精度と動作速度を格段に向上させる手法を提案した論文が Optics Express に掲載されました。中国の常熟理工学院(Changshu Institute of Technology)の姚雨果博士との共同研究の成果です。
Y. Yao and Y. Mizuno, “Neural network-assisted signal processing in Brillouin optical correlation-domain sensing for potential high-speed implementation,” Opt. Express, vol. 29, no. 22, pp. 35474-35489 (2021).
The general neural networks (NNs) based on classification convert the Brillouin frequency shift (BFS) extraction in Brillouin-based distributed sensing to a problem in which the possible BFS output of the sensing system belongs to a finite number of discrete values. In this paper, we demonstrate a method of applying NNs with adaptive BFS incremental steps to signal processing for Brillouin optical correlation-domain sensing and achieve higher accuracy and operation speed. The comparison with the conventional curving fitting method shows that the NN improves the BFS measurement accuracy by 2–3 times and accelerates the signal processing speed by 1000 times for simulated signals. The experimental results demonstrate the NN provides 1.6–2.7 times enhancement for BFS measurement accuracy and 5000 times acceleration for the BFS extraction speed. This method supplies a potential solution to online signal processing for real-time Brillouin sensing.