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Abstract—We have recently developed slope-assisted Brillouin
optical correlation-domain reflectometry (SA-BOCDR) for higher
speed distributed measurement of strain and temperature. How-
ever, no reports have been published yet on the use of high-loss
fibers. Here, we implement SA-BOCDR using a high-loss polymer
optical fiber (POF) for the first time. Due to the gradual reduc-
tion in the transmitted power along the POF, the measurement
sensitivities are found to depend on sensing position. This unique
effect is investigated experimentally, and then a correct POF-based
distributed measurement is performed by compensating this effect.

Index Terms—Brillouin scattering, distributed measurement,
optical fiber sensors, polymer optical fibers.

I. INTRODUCTION

IBER-OPTIC distributed sensing based on Brillouin scat-
F tering [1] has been regarded as one of the most impor-
tant techniques to detect damages of civil infrastructures. A
variety of its configurations developed so far can be classified
into five categories: Brillouin optical time-domain reflectometry
(BOTDR) [2]-[5], Brillouin optical correlation-domain reflec-
tometry (BOCDR) [6]-[15], Brillouin optical time-domain anal-
ysis (BOTDA) [16]—[21], Brillouin optical frequency-domain
analysis (BOFDA) [22]—[24], and Brillouin optical correlation-
domain analysis (BOCDA) [25]-[29]. Each configuration, with
its own advantages and disadvantages, has been extensively
studied to enhance the performance. Here, among them, we
focus on BOCDR, which is the only technique that can simulta-
neously achieve intrinsically single-end accessibility and high
spatial resolution.

Since the first proposal of BOCDR [6], a number of schemes
have been implemented to improve its performance, such as
the measurement range [7], [8], spatial resolution [9], [10], and
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sampling rate [11]. One of the newly developed configurations
is slope-assisted (SA-) BOCDR [12], which uses the power
of the Brillouin gain spectrum (BGS) to derive the Brillouin
frequency shift (BFS), leading to a high sampling rate, loss-
point detectability, and beyond-nominal resolution effect [13].
Its fundamental operation has been well investigated when low-
loss silica glass fibers are used as fibers under test (FUTs) [12],
but no reports have been provided on how the performance
is affected by use of high-loss FUTs, including tellurite glass
fibers [9], chalcogenide fibers [30], and polymer optical fibers
(POFs) [14], [15]. At the sacrifice of the shortened measurement
range, the use of such high-loss fibers provides BOCDR with
some advantages, such as stronger Brillouin signals (for tellurite
[9] and chalcogenide fibers [30]) (leading to enhanced spatial
resolution), extended upper limit of detectable strain [14] and
much higher temperature sensitivity [15] (for POFs). Thus, it is
of crucial importance to investigate the influence of the use of
high-loss fibers on SA-BOCDR operation.

In this work, employing POFs as high-loss fibers, we demon-
strate high-speed distributed sensing based on SA-BOCDR. We
show that, in contrast to the case of low-loss silica fibers, the
strain and temperature sensitivities are dependent on sensing
position because the transmitted power is gradually reduced
in the POFs. After analyzing this unique effect experimentally,
we show that this effect can be compensated so that a correct
POF-based distributed measurement using SA-BOCDR can be
performed.

II. PRINCIPLES

When light propagates in an optical fiber, due to the interac-
tion with acoustic phonons, backscattered Stokes light is gen-
erated through Brillouin scattering. The central frequency of
the Stokes light spectrum (i.e., BGS) is lowered than that of
the incident light spectrum. This central frequency downshift is
referred to as BES, which is about ~10.8 GHz for silica single-
mode fibers (SMFs) [1] and ~2.8 GHz for perfluorinated POFs
[14] when the incident light wavelength is 1550 nm. When strain
or temperature change is applied to the fiber, the BFS shifts to
higher or lower frequency depending on the fiber types. Their
strain- and temperature-dependence coefficients are reported to
be approximately 500 MHz/% and 1 MHz/K for silica SMFs
[31], [32] and —120 MHz/% and -3 MHz/K for POFs [15],
[32]. These dependences have been widely exploited as a basic
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Fig. 1. (a) Schematic of the operating principle of SA-BOCDR. (b) and
(c) Power and power-change distributions along (b) a low-loss fiber and (c)
a high-loss fiber; with (solid curves) and without (dotted lines) partial strain and
heat.

sensing mechanism of fiber-optic distributed Brillouin sensors,
including BOCDR.

BOCDR enables distributed measurement using a so-called
correlation peak inside the FUT [6], [10], [33]. The correlation
peak can be generated by sinusoidally modulating the output fre-
quency of the laser; the position of the correlation peak can be
scanned along the FUT by sweeping the modulation frequency
fm . In general, due to the nature of sinusoidal frequency mod-
ulation, multiple correlation peaks are periodically generated
along the FUT, which limits the measurement range d,,, as [10]

(D

&
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where c¢ is the velocity of light in vacuum and n is the core
refractive index. The spatial resolution Az is given by [10]

dm =

~ cAup
C2mnf, Af]

where Avp is the Brillouin bandwidth and Afis the modulation
amplitude. Note that Eq. (2) holds true only when f,, is lower
than Avg [10].

Standard BOCDR acquires the whole BGS to derive the BFS
at a single sensing position (as a peak frequency of the BGS)
[6], [10] which is relatively time-consuming. In contrast, SA-
BOCDR operates based on the spectral power change at a fixed
frequency vp by exploiting its one-to-one correspondence to
the BFS (see Fig. 1(a)) [12], which enables high-speed mea-
surement. Note that the BFS of the FUT needs to be mea-
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sured beforehand in SA-BOCDR to optimize the measurement
sensitivity and/or dynamic range. One unique feature of SA-
BOCDR is that its final output (i.e., a power-change distribution
along the FUT) does not directly reproduce the actual BFS
distribution, while the output of standard BOCDR completely
reproduces it. As described in detail in [13], the power-change
distribution in SA-BOCDR basically shows a trapezoidal shape,
and only when the length of strained or heated section is equal
to the theoretical spatial resolution, it shows a triangular shape.
In addition, SA-BOCDR has a unique ability to detect strained
or heated sections even shorter than the nominal resolution cal-
culated by Eq. (2) [13].

When a silica SMF with a low propagation loss is used as
an FUT, unless the FUT is extremely long, the Brillouin power
shows almost no change irrespective of the sensing position (see
Fig. 1(b)). However, when a relatively high-loss fiber is used,
even when the FUT is short, the Brillouin power decreases with
increasing distance from the proximal end of the FUT (i.e.,
the pigtail end of the second port of a circulator) as shown in
Fig. 1(c). Note that the final system output of SA-BOCDR is
provided as a power-change distribution, and strain (or heat) is
displayed as a positive shift in the vertical axis. The weakening
of the BGS along the high-loss fiber leads to the reduction in
the spectral slope, finally resulting in the gradual decrease in the
strain and temperature sensitivities.

III. EXPERIMENTAL SETUP

We employed a 15.0-m-long perfluorinated graded-index
POF as an FUT. The POF had a three-layered structure con-
sisting of core, cladding, and overcladding (diameters: 50, 70,
and 490 pm, respectively). A propagation loss of the POF was
~250dB/km at 1550 nm.

The experimental setup of POF-based SA-BOCDR (refer to
Fig. 3 in [12]) is basically the same as that of standard BOCDR
[6] except for the electrical signal processing. All the light paths
except the FUT are composed of silica SMFs. As a light source,
a laser diode at 1550 nm with a bandwidth of ~1 MHz was
used. Its output was divided into two light beams: pump and
reference. The pump light was amplified to ~25 dBm using
an erbium-doped fiber amplifier (EDFA) and injected into the
FUT. The backscattered Stokes light was amplified to ~1 dBm
using another EDFA. The reference light was guided through a
~1-km-long delay fiber, amplified to ~2 dBm, and then coupled
with the Stokes light for heterodyne detection. Using a polar-
ization controller, the polarization state was adjusted so that the
signal-to-noise ratio (SNR) became maximal for each measure-
ment (note that the use of a polarization scrambler for observing
Brillouin signals in POFs causes considerable reduction in SNR
[34]). The optical beat signals were converted into electrical
signals using a photo diode and observed using an electrical
spectrum analyzer (ESA).

Subsequently, exploiting the narrow band-pass filtering func-
tion of the ESA (video bandwidth: 10 kHz; resolution band-
width: 10 MHz), the change in the spectral power at v, was
sequentially output to an oscilloscope (OSC). As a preparatory
experiment for determining the v value and the bandwidth of
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Fig. 2. Local BGS obtained at 1.0 m away from the proximal POF end.

the linear region, we measured the local BGS obtained at 1.0 m
away from the proximal POF end (see Fig. 2). The detailed
measurement conditions are described in the next paragraph.
The BFS was 2.76 GHz at room temperature (25 °C). The op-
timal vp( value was found to be 2.80 GHz, which was set to a
higher frequency than the BFS because the BGS shifts to lower
frequency in POFs with strain and/or heating [15] (unlike the
case of silica-SMF-based SA-BOCDR). The bandwidth of the
linear region (refer to [12] for its definition) was approximately
140 MHz (2.80-2.94 GHz), which corresponds to the strain of
up to ~1.15% and the temperature change of ~43 °C in the POF
(with light propagation, the BGS is basically weakened in the
vertical direction; in other words, if normalized, the BGS shows
an only negligible change depending on the location, leading
to almost no position dependence of the linear range). Here we
discuss the shape of the BGS, which is neither Lorentzian nor
symmetrical. Compared to silica fibers, POFs inherently have a
much wider Brillouin bandwidth (>100 MHz) [14]. Moreover,
in general, as the modulation amplitude grows higher, the Bril-
louin bandwidth becomes wider [10], which deviates the BGS
from a Lorentzian shape. Meanwhile, the asymmetric shape
originates from the overlap of the foot of the Rayleigh spectrum
[34], which also grows wider by modulation in the same manner
as the BGS [10]. Note that the BFS of the POF (~2.8 GHz) is
~4 times lower than that of silica fibers [14] and that the BGS
is more likely to be overlapped by the Rayleigh spectrum.

In the preceding measurement as well as in the following ex-
periments, the modulation frequency f,,, and amplitude Af were
set to 6.15-6.33 MHz and 0.6 GHz, respectively, corresponding
to the measurement range of 18.1 m and the theoretical spatial
resolution of 0.96 m according to (1) and (2). The repetition rate
was set to 100 Hz, and averaging was performed 128 times on
the OSC to improve the SNR.

IV. EXPERIMENTAL RESULTS

First, to derive the theoretical strain and temperature sensi-
tivities as functions of sensing position, we measured the BGS
distribution along the POF with a constant interval of 1.0 m us-
ing standard BOCDR (see Fig. 3). Due to the high propagation
loss in the POF, the peak power of the BGS gradually decreased
with light propagation, which also induced the reduction in its
spectral slope. Note that the BGS is weakened even within the
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Fig. 3. BGS distribution along the POF.

fiber length of the spatial resolution, resulting an unavoidable
measurement error. Here we interpreted the measured sensitivity
as that of the midpoint of the corresponding fiber section.

By differentiating the spectral slope in the linear range
(vpo = 2.80—2.94 GHz, the theoretical dependence of the sen-
sitivity on sensing position was derived (see Fig. 4(a)). The slope
decreased almost linearly as the sensing position became far
from the proximal POF end with a coefficient of approximately
—0.16 dB/GHz/m, which corresponds to the strain sensitivity
dependence of —1.99 x 1072 dB/%/m and the temperature sen-
sitivity dependence of —5.22 x 10~ dB/ °C/m. Subsequently,
we measured the spectral power dependence on sensing posi-
tion when the temperature of the POF was locally changed to
60 °C. The spectral powers were measured when 1.0-m-long
sections (4 sections; 2.0-3.0, 5.0-6.0, 8.0-9.0, 11.0-12.0 m
distant from the proximal POF end) were heated, and plot-
ted as functions of temperature (see Fig. 4(b)). The measured
data were in good agreement with the theoretical trends (indi-
cated by dotted lines) obtained from the BGS distributions (see
Fig. 3). The spectral powers were almost linearly dependent
on temperature, and their coefficients were found to decrease
with increasing distance from the proximal POF end. For each
section, the temperature sensitivity was calculated and plotted
as a function of sensing position (see Fig. 4(c)). The depen-
dence coefficient was —4.98 x 10~* dB/°C/m (corresponding
to —2.10 x 1072 dB/%/m for strain), which is in good agree-
ment with the theoretical value calculated from the BGS distri-
bution (—5.22 x 10~*dB/°C/m).

Finally, we demonstrated distributed measurement of strain
and temperature along the POF using SA-BOCDR. The struc-
ture of the FUT is depicted in Fig. 5(a). A 1.0-m-long section
(close to the nominal spatial resolution) was strained for 1%,
and another 1.0-m-long section was heated to 60 °C. The mea-
sured power-change distribution is shown in Fig. 5(b). At the
expected sections, the power changes corresponding to the strain
and the temperature change were observed, which moderately
agrees with the theoretical dotted line considering the sensitiv-
ity dependence on sensing position and the trapezoidal effect
of SA-BOCDR [13]. Thus, the applied strain and temperature
change were correctly detected. The measurement errors origi-
nate from the signal fluctuations caused by the low SNR, which
can be improved by increasing the number of averaging, in-
creasing the pump power, or optimizing the low-pass filtering
function of the ESA.
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(a) Sensitivity plotted as a function of sensing position for theoretical analysis. The dotted line is a linear fit. (b) Spectral powers plotted as functions of

temperature; measured at four different sections in the POF. The dotted lines are theoretical trends. (c) Temperature sensitivity plotted as a function of sensing

position. The dotted line is a linear fit.
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Fig.5. (a) Structure of the fiber under test for final demonstration. (b) Power-
change distributions along the sensing fiber. The dotted line is a theoretical
trend.

V. CONCLUSION

We investigated the performance of SA-BOCDR using a
POF with a relatively high propagation loss (~250dB/km
at 1550 nm). The measurement sensitivity was shown to be
dependent on the sensing position in the POF. The depen-
dence coefficients were —2.10 x 1072 dB /% /m for strain and
—4.98 x 10~*dB/°C/m for temperature, which agreed well
with the theoretical predictions. By compensating this influence,
we successfully demonstrated a distributed strain and temper-
ature measurement along the POF with a spatial resolution of
~1 m. We believe that these results will be an important archive
in implementing SA-BOCDR using high-loss fibers, especially
POFs, for high-speed distributed strain and temperature sensing
with high flexibility and high temperature sensitivity.
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