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a b s t r a c t

A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural
vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the
reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar
thickness was selected considering the effect of the thickness on the estimation error. In the experimental
setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal trans-
ducer. Using transducers of different lengths, flexural waves in the frequency range of 20–90 kHz were
generated on the bar. The vibration strain in the experiment reached 0.06%. According to the
Bernoulli–Euler model, the reactive energy and dissipated energy were estimated from the vertical veloc-
ity distribution on the bar, and the Q factors were measured as the driving frequency and strain were var-
ied. The experimental results showed that the Q factors decrease as the driving frequencies and strains
increase. At a frequency of 28.30 kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approxi-
mately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other
tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power
ultrasonic devices.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Metallic compounds, such as stainless steels and aluminum
alloys, are commonly used as elastomers in ultrasonic transducers.
To obtain high vibration velocities with lightweight transducers, a
material with low elastic modulus, low density, and low mechan-
ical loss is required as the elastomer. Among existing functional
materials, polymers usually have low elastic moduli and densities.
It has been believed that, in most cases, polymers are good at
absorbing vibrations because of their high mechanical loss. How-
ever, some of the new functional polymers invented in the last
three decades exhibit low mechanical loss. To gain a primary
understanding of the mechanical-loss properties of polymers, it is
of significance to evaluate the mechanical loss under ultrasonic fre-
quencies and large amplitudes. As flexural vibrations are widely
used in ultrasonic transducers [1–8], in this study, we focus on
the mechanical-loss properties of polymers in flexural vibrations.

The mechanical quality factor (Q factor) is inversely propor-
tional to the mechanical loss, and it is a commonly-used parameter
that indicates the suitability of a material as a vibrator. Many
methods for Q-factor measurement have been developed: (1)
Impact testing method is being widely applied in industry [9].
The Q factor is obtained from the decay in the damped oscillation
curve at the natural frequency of the sample after striking it with a
hammer. (2) The resonance curve method is used to evaluate the
mechanical loss of transducers [4]. The Q factor is calculated from
the curve of vibration amplitude versus frequency, which provides
an overall result originating from the loss in the elastomer, loss in
the excitor (e.g. piezoelectric ceramic elements), and loss gener-
ated on the contacting surface between the elastomer and the exci-
tor. (3) The Q factor can be derived from the attenuation coefficient
of a traveling wave. The attenuation coefficient is calculated from
the amplitude ratio of reflected waves that are generated by a burst
excitation [10]. However, the vibration amplitude is limited
because of the low power of the burst excitation. (4) The attenua-
tion coefficient can be directly calculated from the fitting curve of
the distance decay of a traveling wave generated by a continuous
excitation. However, it is difficult to separate the traveling wave
from the reflected wave on a vibrating bar, especially for a material
with low mechanical loss.

A method that gives a precise value of the Q factor (or attenua-
tion coefficient) of polymers under ultrasonic frequencies and large
amplitudes is required. In a previous study [11], a method for mea-
suring the Q factors of a cylindrical bar in torsional vibration was
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developed. The Q factors were calculated from the torsional vibra-
tion velocity distribution on the side surface based on the original
definition of the Q factor. In the present work, we modify the afore-
mentioned method to measure the Q factor in flexural vibration. In
addition, we discuss the requirements for achieving high measure-
ment precision. When the frequencies and strains are varied, we
measure the Q factors of bars made of polyacetal (POM), acryloni
trile–butadiene–styrene (ABS), poly(ether ether ketone) (PEEK),
and poly(phenylene sulfide) (PPS).
2. Principle of Q-factor measurement

2.1. Original definition of Q factor

Fig. 1(a) shows a vibrating bar. Flexural waves are generated
with a vibration source located at one end. The original definition
of the Q factor is the ratio of the reactive energy Ek to the dissipated
energy Ep in the sampling part between the cross-sections L1 and
L2:

Q ¼ 2pEk

Ep
: ð1Þ

The reactive energy stored in the vibrating bar consists of
kinetic energy and elastic energy. In the time domain, they are
transforming to each other and their sum is constant [12]. Thus,
the reactive energy equals the maximum kinetic energy. The dis-
placement of a small section is a composition of a translational
motion in the vertical direction and a rotation [13]. Thus, the max-
imum kinetic energy is given as

Ek ¼
Z L2

L1

d
1
2
mv2

� �
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Z L2
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Iu2

� �

¼ 1
2
qbh

Z L2

L1

v2dzþ 1
24

qbh3
Z L2

L1

u2dz; ð2Þ

where v and u represent the zero-to-peak vertical velocity and
angular velocity, respectively. m and I are the mass and rotary iner-
tia of the sampling interval, respectively. q is the density, and b and
Fig. 1. Q-factor measurement from the vibration velocity distribution. (a) The wave,
consisting of a traveling wave and a standing wave, is generated on the vibrating
bar. A composition of two traveling waves, W+ and W�, with inverse propagation
directions is assumed. (b) P1+ and P1

� are the active vibration powers of W+ and W�
across L1, respectively, and P1 = P1

+ � P1
�. P2+ and P2

� are the active vibration powers of
W+ and W� across L2, respectively, and P2 = P2

+ � P2
�.
h represent the width and thickness of the specimen, respectively.
The rotary inertia I is determined by the width and thickness as
I = bh3/12.

The dissipated energy Ep is the decrease in the active vibration
energy flowing across L1 and L2:

Ep ¼ 2p
x0

� P1—P2ð Þ; ð3Þ

where x0 is the angular frequency, and P1 and P2 represent the
active vibration powers of the wave flowing across L1 and L2,
respectively. If the wave amplitude decreases to zero before reflec-
tion because of large energy dissipation, only a traveling wave
exists on the bar, and it is clear that Ep exceeds zero. In most cases,
a wave that consists of a traveling wave and a standing wave is gen-
erated. It is necessary to investigate whether Eq. (3) is effective in
calculating the dissipated energy of this wave. We assume that
the wave in Fig. 1(a) is a combination of a traveling wave propagat-
ing along the +z axis, W+, and a traveling wave propagating along
the �z axis, W�. Further, W� is the reflected wave of W+. In Fig. 1
(b), P1+ represents the active vibration power of W+ flowing across
L1, and its positive direction is along the +z axis. On the other hand,
P1
� is the active vibration power of W� that flows across L1, and its

positive direction is along the �z axis. WhenW+ andW� flow across
L1 simultaneously, the active vibration power P1 equals P1+–P1�. Sim-
ilarly, P2+ and P2

� represent the active vibration powers ofW+ andW�
flowing across L2, and P2 = P2

+–P2�. Thus, Eq. (3) can be rewritten as

Ep ¼ 2p
x0
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ð4Þ
where P1

+–P2+ and P2
�–P1� represent the dissipated powers of W+ and

W�, respectively. Because W+ flows across L1 and L2 successively, P1+

is larger than P2
+ owing to energy dissipation during propagation.

Similarly, P2� is larger than P1
�. Since W� is the reflection wave of

W+, P2+ is larger than P2
�. Thus, Ep exceeds zero, which indicates that

Eq. (3) is effective in calculating the dissipated energy when a trav-
eling wave and a standing wave are generated simultaneously. In
the experiments for Q-factor measurement described later, as
high-amplitude vibrations are generated on long polymer-based
bars, the active vibration power and dissipated power are measure-
able. Note that it is difficult to estimate Q factors of materials with
extremely low mechanical loss, such as sapphire [14], for which P1

+

equals P1
– approximately, and P becomes too small to be detected.

In an alternating current circuit, the active power (or real
power) P is calculated from the zero-to-peak voltage u and current
i [12]:

P ¼ 1
2
Reðu � i�Þ: ð5Þ

The voltage u and current i are given as complex numbers; Re
represents the real part and the asterisk indicates the complex con-
jugate. The active power in a mechanical system is calculated from
the force (moment) and the translational velocity (angular veloc-
ity), which correspond to the voltage and current in an electrical
system, respectively. The active vibration power in flexural vibra-
tion is calculated as [15–17]

P ¼ 1
2
Re V � v� �M �u�ð Þ; ð6Þ

where V and M represent the shearing force and bending moment
acting on the cross-section, respectively. The active vibration power
consists of the shearing-force component V � v⁄ and the bending-
moment component �M � u⁄. The shearing-force component is
V � v⁄, because the positive direction of V on the right lateral surface
of the bar element (Fig. 2(a)) is +y axis, which is the same as that of
v. The bending-moment component equals �M � u⁄ because the



Fig. 2. The mechanical models for describing the flexural deformation on a bending bar. (a) The Bernoulli–Euler model and (b) the Timoshenko model.

Table 1
Parameters used in simulation.

Parameter Unit Value

Elastic modulus, E GPa 3.45
Density, q �103 kg/m3 1.35
Poisson’s ratio – 0.36
Width, b mm 10
Length, l mm 500
Wavenumber, k mm�1 0.628
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positive directions of M and u are along the +x and �x axis, respec-
tively. The zero-to-peak vertical velocity v is measured directly at
different positions along the z axis. The rotation angle u, shear force
V, and bending momentM need to be theoretically derived from the
vertical velocity v. The Bernoulli–Euler model, as shown in Fig. 2(a),
is valid for a bar of small thickness. The Timoshenko model, as
shown in Fig. 2(b), is an improved version of the Bernoulli–Euler
model, and it describes the flexural deformation of a thick bar more
precisely [13,18]. Because the deformations generated by the shear-
ing force and rotary inertia are taken into account, the rotation
angle estimated by the Timoshenko model is larger than that esti-
mated by the Bernoulli–Euler model under the same driving force
[17]. However, the calculation in the Timoshenko model is more
complicated. To obtain high precision with low calculation cost,
choosing a thin sample bar that is valid under the Bernoulli–Euler
model is a reasonable approach. To determine the appropriate
thicknesses of the sample bars, the error in the Bernoulli–Euler
model is estimated quantitatively.

2.2. Comparison of Q factors calculated using Bernoulli–Euler model
and Timoshenko model

According to the Bernoulli–Euler model, the rotation angle u,
shearing force V, and bending moment M for the vertical velocity
v are given as

u ¼ dv
dz

; ð7Þ
dV
dt

¼ EIz � d
3v
dz3

; ð8Þ

dM
dt

¼ EIz � d
2v
dz2

; ð9Þ

where E is the elastic modulus and Iz is the second moment of area.
For a rectangular cross-section, Iz is determined by the width and
thickness as Iz = bh3/12. In the Timoshenko model, the rotation
angle u, shearing force V, and bending moment M are given as [17]

u ¼ dv
dz

þ V
jGA

; ð10Þ
dV
dz

¼ qA � dv
dt

; ð11Þ
dM
dz

¼ V þ qIz � dudt ; ð12Þ

where A, the cross-sectional area, is determined by the width and
thickness as A = bh. G represents the shear modulus. j is the
Timoshenko coefficient for a rectangular cross-section, and it is
determined by Poisson’s ratio l [17]:

j ¼ 10ð1þ lÞ
12þ 11l

: ð13Þ
Considering that the wave is reflected at the free end of the bar,
we assume a harmonic solution for the wave equation as

vðt;zÞ ¼ A0 exp jx0t� ðaþ jkÞ � z½ � þ exp jx0tþ ðaþ jkÞ � z�2lð Þ½ �f g;
ð14Þ

where A0 is the amplitude of the vibration velocity, a is the attenu-
ation coefficient, k is the wavenumber, and l is the total length of
the vibrating bar. As the length was varied from 0 to 1.5 times
the wavelength, the Q factors were calculated on the basis of the
Bernoulli–Euler model and the Timoshenko model, as QB–E and QT,
respectively. Assuming that the Q factor calculated by the
Timoshenko model gives a precise value, the error in the Ber-
noulli–Euler model is given as

e ¼ 1� QB�E

QT
: ð15Þ

Considering the measurement results in the previous study
[19], the attenuation coefficient was varied from 0.03 to 60 dB/
cm in our simulation. The other parameters are listed in Table 1.
Fig. 3(a) and (b) shows the results for attenuation coefficients of
0.03 and 30 dB/cm, respectively. In Fig. 3(a), QB–E reached 1040,
which was smaller than QT. This is mainly attributed to the large
reactive energy calculated by the Timoshenko model. As stated
above, under the same driving force, the rotation angle calculated
by the Timoshenko model is larger than that calculated by the Ber-
noulli–Euler model. Thus, the reactive energy increases as the rota-
tion angle increases. Fig. 3(b) shows that, at an attenuation
coefficient of 30 dB/cm, both QB–E and QT were less than 2. The dis-
sipated energy increases with the attenuation, resulting in a
decrease in the Q factor.

Fig. 4 shows the QB–E-to-QT ratios when the attenuation coeffi-
cients are 0.03, 0.3, 3, 30, and 60 dB/cm. The QB–E-to-QT ratio was
determined by both the attenuation coefficient and the
thickness-to-wavelength ratio. When the attenuation coefficient
was varied from 0.03 to 0.3 dB/cm, the QB–E-to-QT ratio did not
change significantly. In contrast, the QB–E-to-QT ratio tended to 1
as the attenuation increased. When the thickness-to-wavelength
ratio was 0.2, the error was smaller than 0.2%. When the



Fig. 3. Q factors calculated by the Bernoulli–Euler model (QB–E), the Timoshenko model (QT), and the QB–E-to-QT ratio as a function of the thickness-to-wavelength ratio, h/k, at
attenuations of (a) 0.03 dB/cm and (b) 30 dB/cm.

Fig. 4. Error in the Bernoulli–Euler model as a function of the thickness-to-
wavenumber ratio, h/k, at attenuations of 0.03, 0.3, 3, 30.00, and 60.00 dB/cm.
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thickness-to-wavelength ratio increased to 0.5, the error increased
to approximately 5% at an attenuation coefficient of 0.03 dB/cm.

In summary, the error in the Bernoulli–Euler model is smaller
for a material with high mechanical loss. The maximum error is
smaller than 0.2% if the thickness is less than 0.2 times the wave-
length when the attenuation coefficients of the tested polymers are
greater than 0.03 dB/cm. Based on the simulation results, we will
discuss the appropriate thickness of the bar later.
3. Experimental setup

3.1. Sample polymers

In this study, the Q factors of some functional polymers, namely,
POM, ABS, PEEK, and PPS, were experimentally investigated. In
industrial applications, lightweight gears are usually made of
POM because of its high resistance to abrasion and heat [20]. ABS
has good flowability and high resistance to impact [21]. The cur-
rent version of PEEK has excellent abrasion resistance and worka-
bility [22,23]. PPS is widely employed in the automotive and
electrical industries because PPS has good wear properties [24].
The elastic moduli, densities and Poisson’s ratios of POM, ABS,
PEEK, and PPS tested in the experiments are listed in Table 2.
Table 2
Mechanical parameters of the tested polymers.

Polymer Elastic modulus,
E (GPa)

Density, q
(�103 kg/m3)

ffiffiffiffiffiffiffiffiffi
E=q

p
(�103 m/s)

Poisson’s
ratio, l

POM 2.80 1.41 1.41 0.35
ABS 2.40 1.05 1.51 0.36
PEEK 3.50 1.28 1.65 0.40
PPS 3.45 1.35 1.59 0.36
3.2. Experimental setup

Fig. 5 shows the experimental setup for Q-factor measurements
of the polymer samples. Piezoelectric longitudinal transducers
with resonance frequencies of 30, 42, 65, and 95 kHz were pre-
pared to generate ultrasonic-frequency vibrations. One end of the
bar was fixed at the top of the transducer with a bolt. When a driv-
ing voltage was applied to the piezoelectric ceramic elements in
the longitudinal transducer, a flexural wave was generated on
the bar. The strain on the vibrating bar was changed by adjusting
the amplitude of the driving voltage. A laser Doppler velocimeter
(NLV1232, Polytec, Waldbronn, Germany) mounted on a guide rail
was used to record the vertical velocities on the bar surface at dif-
ferent positions. The amplitude of the vibration velocity and the
phase between the velocity and the input signal were detected
with a lock-in voltmeter (5560, NF electronic instruments, Yoko-
hama, Japan).
3.3. Appropriate thicknesses of polymer-based vibrating bars

To determine the appropriate thickness for the Bernoulli–Euler
model, we calculated the wavelength of the flexural waves using
the expression [17]:

k2 ¼ 2p
f

ffiffiffiffiffiffiffi
EIz
qA

s
¼ 1:814 � h

f
�

ffiffiffiffi
E
q

s
; ð16Þ

where f is the driving frequency. Substituting the elastic modulus
and density of PPS into Eq. (16), the wavelengths of the PPS-based
bars were calculated as a function of thickness at 30, 42, 65, and
95 kHz. Fig. 6 shows the results. When the thickness was 1 mm
and the frequency was 95 kHz, the wavelength was approximately
5.5 mm and the thickness-to-wavelength ratio was approximately
0.18. When the frequency decreased to 30 kHz, the thickness-to-
wavelength ratio decreased to 0.1 monotonically. According to the
simulation results in Fig. 4, the error in the Bernoulli–Euler model
was smaller than 0.2% if the thickness-to-wavelength ratio was var-
ied from 0.1 to 0.18, which can be tolerated in this measurement.
When the thickness increased to 3 mm, the thickness-to-
wavelength ratio reached 0.31 at 95 kHz and the error increased
to 2% for a material with low mechanical loss. Fig. 6 is also effective
in determining the appropriate thicknesses of the POM-, ABS-, and
PEEK-based vibrating bars, because the tested polymers do not dif-
fer significantly in terms of their elastic moduli and densities. Con-
sidering the workability, polymer samples of 1 mm in thickness,
10 mm in width, and 300 mm in length were used in this study.
The theoretical error in the Bernoulli–Euler model is 0.2%.



Fig. 5. Experimental setup for Q factor measurement by the devised method.

Fig. 6. Wavelength, k, of the flexural wave for the PPS-based vibrating bar as a
function of the thickness, h.
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3.4. Measurement procedure

To calculate the Q factor from the discrete measurement results
of the vibration velocity distribution, Eqs. (2) and (6)–(9) need to
be discretized. In previous studies [14–16], the data was processed
in the wavenumber space (k space) to suppress the error generated
in high-order finite difference calculations. The procedures are as
follows:

(1) Implementing the spatial Fourier transform, the k-space
spectrum Craw(k) of the vibration velocity distribution v(z)
is obtained.

(2) A low-pass filter is employed in the k space to reduce the
noise of the high-wavenumber components. The function
of the low-pass filter L(k) is given as [15]
� � �8

LðkÞ ¼

1� 1
2 exp �S � 1� k

kc

	 
2
; k 6 kc;

1
2 exp �S � k

kc

	 
2
� 1

� � �
; k > kc;

>>><
>>>:

ð17Þ
where kc is the cutoff wavenumber and S is the filter-shape
coefficient. The optimal values of kc and S have been investi-
gated in a previous study [14]: the ratio of the cutoff
wavenumber kc to the propagating wavenumber k0 was set
to 1.8 and the filter-shape coefficient S was set to 10. The fil-
tered k-space spectrum C(k) is given as
CðkÞ ¼ LðkÞ � CrawðkÞ: ð18Þ

(3) Substituting Eqs. (7)–(9) into Eq. (6), and implementing dis-

cretization, the active vibration power flow is given as
" #

PðzÞ ¼ EIz

2x0
� Im d3vðzÞ

dz3
� v�ðzÞ � d2vðzÞ

dz2
� dv

�ðzÞ
dz

: ð19Þ
The 1st-, 2nd-, and 3rd-order spatial derivatives of the
vibration velocities are calculated in the k space using the
expression [14]:� �

CnðkÞ ¼ C

dnv
dzn

¼ jkð Þn � C kð Þ; ð20Þ
where n represents the order of the derivative and Cn(k) is
defined as the k-space spectrum of the nth-order derivative
of the filtered vibration velocity. Using the inverse spatial
Fourier transform, the filtered vibration velocity distribution
vf, and the 1st-, 2nd-, and 3rd-order derivatives of the vibra-
tion velocity (dv/dz, d2v/dz2, and d3v/dz3) are calculated from
C(k), C1(k), C2(k), and C3(k), respectively.

(4) The reactive-energy distribution DEk(z) and the local-
dissipated-power distribution DP(z) are given as� �

DEkðzÞ ¼ 1

2
qbh � v2ðzÞ � Dzþ 1

24
qbh3 � dvðzÞ

dz

2

� Dz; ð21Þ

DPðzÞ ¼ PðzÞ � Pðzþ DzÞ; ð22Þ

where Dz is the sampling interval along the z axis, which is
set to 0.1 times the wavelength in this study. The reactive
energy Ek and dissipated energy Ep between L1 and L2 are
given as
Ek ¼
XL2
L1

DEkðzÞ; ð23Þ

Ep ¼ 2p
x0

XL2
L1

DPðzÞ: ð24Þ
(5) Finally, the Q factors are calculated with Eq. (1).

4. Experimental results

4.1. Dissipated power

Fig. 7(a) shows the vibration velocity distribution on the PPS-
based bar at a frequency of 28.30 kHz and driving voltage of
100 V. The maximum vibration velocity reached 280 mm/s. The
spectrum of the vibration velocity is shown Fig. 7(b). The propagat-
ing wavenumber k0 was approximately 0.616 mm�1 (k = 10.2 mm)
at 28.30 kHz. The cut-off wavenumber of the low-pass filter was
set to 0.9 mm�1. Fig. 7(c) and (d) shows the reactive-energy distri-
bution DEk(z) and the local-dissipated-energy distribution DP(z)
along the z axis. Clearly, the reactive energy and the local



Fig. 7. Example of Q-factor calculation. (a) Vibration velocity distribution at a driving frequency of 28.30 kHz and zero-to-peak voltage of 100 V. (b) Spectrum of the vibration
velocity and the low-pass filter. (c) Reactive-energy distribution, DEk(z), and (d) local-dissipated-power distribution, DP(z), along the z axis.
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dissipated energy decreased as the propagating distance increased.
In this study, the integral interval (L1–L2) for calculating Ek and Ep
were 125–175 mm.

Based on the Bernoulli–Euler model [13,18], the strain c on the
bending bar is given as

c ¼ M
EIz

� h
2
: ð25Þ

Substituting Eq. (9) into Eq. (25), we obtain

c ¼ h
2x0

� d
2v
dz2

: ð26Þ

The 2nd-order derivative of the vibration velocity was obtained
using Eq. (20). The maximum strain of the 1-mm-thick PPS-based
bar in the range of 125–175 mm is 0.037%. Using Eqs. (23) and
(24), we calculated that the reactive energy and dissipated energy
in the range of 125–175 mm are 4.900 � 10�6 J and 0.085 � 10�6 J,
respectively. Thus, the Q factor of PPS is 362 at a driving frequency
of 28.30 kHz and strain of 0.037%.
4.2. Q factors of the tested polymers

Fig. 8 shows the Q factors of the PPS-, PEEK-, POM-, and ABS-
based bars as the strain is varied from 0.005% to 0.060% at
40.99 kHz. The Q factor of the PPS-based bar was approximately
350 at 0.005%. As the strain increased, the Q factors of the PPS-,
PEEK-, POM-, and ABS-based bars decreased. The Q factor of the
PPS-based vibrating bar decreased to approximate 150 at 0.058%,
which was 0.4 times that at 0.005%. The Q factor of the PEEK-
based bar was approximately 90 at 0.006%. The Q factors of the
POM- and ABS-based bars were approximately 20, which were
only 0.06 times the maximum Q factor of the PPS-based bar.



Fig. 8. Q factors of the PPS-, PEEK-, POM-, and ABS-based vibrating bars as a
function of the strain at a frequency of 40.99 kHz.

Fig. 10. Q factors of the PPS- and PEEK-based bars as a function of the driving
frequency in the strain ranges of 0.005–0.01% and 0.035–0.04%. The Q factors of the
PPS- and PEEK-based vibrating bars at a natural frequency of 0.08 kHz are measured
by the impact testing method.

Fig. 11. Experimental setup for Q-factor measurement by the impact testing
method.
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Fig. 9(a) shows the Q factors of the PPS-based bar versus the
strain at 28.30, 40.99, 63.84, and 90.23 kHz. The maximum Q factor
reached approximately 460 at a driving frequency of 28.30 kHz and
strain of 0.050%. The attenuation coefficient corresponding to the
maximum Q factor was approximately 0.05 dB/cm. When the
strain was smaller than 0.020%, the Q factors did not change signif-
icantly. In contrast, the Q factors decreased sharply when the strain
exceeded 0.020%, especially at 28.30 and 40.99 kHz. As shown in
Fig. 9(b), the maximum Q factor of the PEEK-based vibrating bar
was 115 and decreased as the strain increased.

Fig. 10 shows the Q factors of the PPS- and PEEK-based bars as a
function of the driving frequency when the strains are 0.005–
0.010% and 0.035–0.040%. The Q factors of the PPS- and PEEK-
based bars decreased as the driving frequency increased. The fit-
ting curves show that the Q factor is inversely proportional to
the driving frequency in the range of 30–100 kHz. The decrease
in the Q factors with increasing vibration velocity and driving fre-
quency may be attributed to the hysteretic strain–stress behavior
of polymers [19,25].

We draw the following conclusions about the Q factors of the
tested polymers: (1) The Q factors of the polymer-based vibrating
bars decrease as the vibration velocity and driving frequency
increase. (2) When the driving frequency is 28.30 kHz and he strain
is smaller than 0.005%, the Q factor of the PPS-based vibrating bar
reaches 460, which is larger than those of other tested polymers
under the same strain and driving frequency.

4.3. Comparison with experimental results obtained via impact testing

For comparison, the Q factors of the PPS- and PEEK-based can-
tilevers were also measured using the impact testing method [9].
The experimental setup is shown in Fig. 11. Cantilevers with
lengths of 100, 150, and 200 mm were sandwiched between two
Fig. 9. Q factors of (a) the PPS-based and (b) PEEK-b
stainless-steel plates with a vise. The width and thickness of the
cantilevers were 10 and 1 mm, respectively. A 20-mm-diameter
ball made of stainless steel was released from the position above
the free end of the cantilever to give a transient mechanical input.
The strain on the cantilever was changed by adjusting the initial
height of the ball. The laser Doppler velocimeter (see Section 3.2)
was used to measure the vibration velocity at 50 mm from the
fixed end. In theory, the vibration velocity on the vibrating bar is
a damped oscillation with an exponential envelope, which is given
as

vðtÞ ¼ V0 � e�fxnt � sinðxnt þ hÞ; ð27Þ
ased vibrating bars as a function of the strain.



Fig. 12. Q factors of the PPS- and PEEK-based bars measured by the impact testing
method.
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where V0, 2f, xn, and h represent the initial vibration velocity,
damping coefficient, natural frequency of the bar, and phase,
respectively. The Q factor is given as [12]

Q ¼ 1
2f

: ð28Þ

The Q factor was calculated by fitting the measured data with
the envelope of Eq. (27). The measurements were carried out 20
times and the averaged value was selected as the Q factor of the
polymer at a certain strain.

Fig. 12 shows the Q factors measured by the impact testing
method. The natural frequencies of the 100-, 150-, and 200-mm-
long polymer-based bars were approximately 0.18, 0.08, and
0.05 kHz, respectively. In the range of 0.005–0.010%, the Q factor
of the PPS-based cantilever was approximately 580, which was
twice as high as that in the range of 0.035–0.040%. The Q factor
of the PEEK-based cantilever was 150 in the range of 0.005–
0.010% and decreased to 90 as the strain increased to 0.040%. The
experimental results also demonstrate that the Q factor is indepen-
dent of frequency in the range of 0.050–0.180 kHz.

The Q factors of the PPS- and PEEK-based bars at 0.08 kHz mea-
sured using the impact tested method are shown in Fig. 10. They
are in accordance with the frequency- and strain-dependences of
the Q factor measured by the devised method described above.
However, these Q factors are lower than the values extrapolated
from the results obtained by the devised method. This may be
attributed to the mechanical loss generated on the contacting sur-
face between the cantilever and the plates. In the devised method
(Fig. 5), the energy loss is distributed in the transducer, contacting
surface, and polymer-based bar. Since the active vibration power
flowing across a cross-section is calculated, the dissipated energy,
which reflects the energy loss generated on a certain part, can be
estimated. In contrast, using the impact testing method (Fig. 11),
it is difficult to separate the energy loss generated on the bar from
that on the contacting surface between the plate and the polymer-
based bar. In the impact testing method, the energy loss in the
vibration system is used as the dissipated energy in calculations,
which yields a smaller Q factor than that obtained by the devised
method.

5. Conclusions

As the first step in investigating the possibility of employing
polymers as elastomers in high-power ultrasonic applications, we
devised a method for evaluating the mechanical loss in ultrasonic
frequencies and high vibration amplitudes, and we measured the
Q factors of some functional polymers. Based on its original
definition, the Q factor was precisely measured for a bar with suf-
ficiently small thickness. The Q factor decreased as the driving fre-
quencies and strains increased. At 28.30 kHz, the Q factor of PPS
reached approximately 460 when the strain on the bar was smaller
than 0.005%, which indicated that PPS can be potentially employed
as an elastomer in ultrasonic transducers. In the future, using this
method, we will explore the mechanical loss of other functional
polymers.
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