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Abstract— Though the strain characteristics of fiber Bragg
gratings (FBGs) inscribed in perfluorinated graded-index (PFGI)
polymer optical fibers (POFs) have been reported, their temper-
ature characteristics have not yet been detailed. In this paper,
we experimentally investigate the temperature dependence of the
Bragg wavelength of a PFGI-POF-FBG. With the increasing
temperature, each peak of the FBG-reflected spectrum shifted
to longer wavelength with different coefficients. The temperature
coefficient of one of the clearest peaks was 0.09 nm/◦C, which was
eight times larger than those of FBGs in silica single-mode fibers
and almost the same as those of FBGs in polymethyl methacrylate
POFs. A temperature-independent but strain-dependent peak
was also observed, which indicates the potential of discriminative
sensing of strain and temperature.

Index Terms— Polymer optical fibers, fiber Bragg gratings,
temperature sensing, strain sensing.

I. INTRODUCTION

SENSING of a variety of physical, chemical, and biological
parameters has been one of the major applications of

optical fibers [1], [2]. Configurations of fiber-optic sensors
are generally categorized into two: distributed sensors and
single- (or multiple-) point sensors. The former include strain
and/or temperature sensors based on some nonlinear phenom-
ena [3]–[5], which operate in a distributed manner at the cost
of relatively low sensitivity (for instance, it is difficult for such
distributed sensors to detect small strain of << 10 με). The
latter include fiber-grating-based sensors [6]–[13]. Although
the number of sensing points is limited, their sensitivity is
generally much higher than that of distributed sensors. Here,
let us focus on fiber Bragg grating (FBG) sensors.

FBGs have been reported to have measurement capability
of strain [8], [13], temperature [8], humidity [9], refractive
index [10], pressure [11], [12], and many others. Of all these
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parameters, strain and temperature are two of the most com-
mon measurands of FBG sensors. To date, an FBG inscribed in
a standard silica single-mode fiber (SMF) has been reported
to have a strain sensitivity of 6.3 nm/% at ∼800 nm [14]
(corresponding to 12.2 nm/% at ∼1550 nm) and a temperature
sensitivity of ∼0.011 nm/◦C at ∼1550 nm [6], [7]. Silica
SMFs, however, suffer from their fragility and easily break
if a ∼3% strain is applied. One method for tackling this
problem is to use polymer optical fibers (POFs) [15], which
are so flexible that they do not break even if a large strain
of tens of percent is applied [16]. Therefore, POF-FBGs have
gathered a lot of attention to extend the measurable maximal
strain [17].

POFs have several types, of which the most widely used are
poly(methyl methacrylate) (PMMA)-POFs. FBGs inscribed in
PMMA-POFs have been reported to have a strain sensitivity
of 7.1 nm/% at ∼800 nm [18] (corresponding to 13.8 nm/%
at ∼1550 nm) and a temperature sensitivity of 0.088 nm/◦C
at ∼1560 nm [19]; their potential strain dynamic range is
13% [20]. However, PMMA-POF-FBGs suffer from extremely
high propagation loss (>>100 dB/m) at telecom wavelength.
Therefore, it is not easy to employ high-performance but rel-
atively inexpensive devices designed for telecom use, such as
amplified spontaneous emission (ASE) sources, to observe the
FBG-reflected spectra. To solve this issue, recently, FBGs have
been inscribed not only in PMMA-POFs but also in perfluori-
nated graded-index (PFGI-) POFs, which have been developed
for short distance communication systems (relatively low
propagation loss (0.25 dB/m) even at 1550 nm) [21], [22].

As PFGI-POFs are commercially available only as
multimode fibers and not photosensitive at ultraviolet wave-
length [22], it was difficult to inscribe FBGs in PFGI-POFs.
However, by using femtosecond laser irradiation, FBG inscrip-
tion in PFGI-POFs has now turned out feasible [22]–[30].
PFGI-POF-FBGs have lower optical loss, and their Bragg
wavelengths at ∼1550 nm can be investigated using ASE
sources. In addition, by exploiting their core refractive index
close to that of water, they are sometimes beneficial for
bio-sensing applications [23]. To date, their sensing character-
istics of strain, pressure, bending, etc., have been well docu-
mented [12], [13], [22], [27], [31], [32], but no detailed reports
have been given to their temperature dependence. More specif-
ically, the temperature dependence of the Bragg wavelength
of a PFGI-POF-FBG has been roughly reported [22]–[24],
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but more precise measurement of each Bragg wavelength of
multiple spectral peaks, corresponding to different propagation
modes, has not yet been clarified.

Motivated by this situation, in this work, we precisely inves-
tigate the temperature dependence of the Bragg wavelength of
a PFGI-POF-FBG at 1550 nm. We show that, with increasing
temperature, all the spectral peaks shift to longer wavelength
with different coefficients. One of the clearest peaks exhibits
a temperature coefficient of 0.09 nm/◦C, which is 8 times the
value of an FBGs in a silica SMF and almost identical to
that of a PMMA-POF-FBG. One of the other peaks is found
to be temperature-independent but strain-dependent, which
indicates that discriminative sensing of strain and temperature
is potentially feasible by using multiple spectral peaks of a
single PFGI-POF-FBG.

II. PRINCIPLE

FBGs can be inscribed not only in SMFs but also in MMFs.
Suppose a GI-MMF with a refractive index profile expressed
as (0 < r < R):

n (r) = n1

√
1 − 2�

( r

R

)g
, (1)

and as (R ≤ r):

n (r) = n1
√

1 − 2�, (2)

where n1 is the maximal value of the core refractive index,
R is the core radius, � is the relative index difference between
core and cladding, and g is the parabolic profile parameter.
The approximate number of modes in the GI-MMF M is then
given by [33]:
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where λ is the FBG reflection wavelength. By substitut-
ing the parameters of a standard PFGI-POF (n1 = 1.347,
a = 25 um, � = ∼0.01, g = 2, λ = ∼1560 nm),
the number of modes is roughly estimated to be 90 at this
wavelength. Without special control for exciting only the
fundamental mode [34], light injected into this PFGI-POF
excites some of these modes (especially, lower-order modes)
and generates multiple peaks at slightly different wavelengths
in the FBG-reflected spectrum.

When an PFGI-POF-FBG is strained or heated, each
spectral peak shifts with its own dependence coefficient.
At 1550 nm, a typical strain-dependence coefficient is
∼14 nm/% [22], [28], which is ∼1.1 times the value of an
FBG in a silica SMF [6]. A temperature dependence coeffi-
cient is reported to be ∼0.015 nm/◦C [22] or 0.028 nm/◦C
[23], [24]. However, here we should note that these values
were obtained using some demodulation techniques [28], [35];
namely, these values were kinds of averaged values of all
the peaks in the spectrum. In the case of strain, each peak
has been shown to exhibit its own dependence coefficient,
ranging from 12.6 nm/% to 14.3 nm/% [35]. In contrast, such a
detailed measurement has not been performed for temperature
dependence.

Fig. 1. Experimental setup for measuring the temperature dependence of the
Bragg wavelength of the PFGI-POF-FBG.

Fig. 2. (a) Measured spectrum of the FBG-reflected light. (b) Magnified
view of the red-circled part in (a), around the FBG-induced peaks.

III. FBG INSCRIPTION AND MEASUREMENT SETUP

An FBG was inscribed in a 1.2-m-long PFGI-POF using a
femotosecond laser irradiation method [29], [34]. The length
of the FBG was 2 mm. The PFGI-POF (GigaPOF−50SR,
Chromis Fiberoptics) was composed of three layers: core
(diameter: 50 μm; refractive index: ∼1.35), cladding
(diameter: 70 μm, refractive index: ∼1.34), and overcladding
(diameter: 490 μm). The core and cladding layer were
doped and undoped amorphous fluoropolymer (CYTOP®),
respectively, and the overcladding layer was polycarbonate.
The optical propagation loss was ∼0.25 dB/m at 1550 nm,
and the numerical aperture was ∼0.19. The FBG was
inscribed directly, without removal of the overcladding layer,
using a femtosecond laser system (High Q femtoREGEN,
High Q Laser) at 517 nm. The pulse duration was 220 fs,
the repetition rate was 1 kHz, and the pulse energy was
∼100 nJ [22], [29]. The POF was mounted on an air bearing
translation system (Aerotech), which can achieve two-axis
motion with high resolution and high accuracy. A long-
working-distance objective (x50) was mounted on a third
axis, and the laser beam was irradiated focusedly into the
fiber. Accurate synchronization of the laser pulse repetition
rate and the stage motion enabled plane-by-plane grating
inscription with a desired length and an index-modulation
value [22], [26], [29], [34].

Figure 1(a) shows an experimental setup for measuring
the temperature dependence of the FBG-reflected spectrum.
All the optical paths except the POF were silica SMFs. The
output from an ASE source was injected into the POF, and the
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Fig. 3. Temperature dependence of the POF-FBG-reflected spectrum. (a) Spectral change when temperature increased from 27.5◦C to 60.1◦C. (b) Spectral
change when temperature increased from 27.5◦C to 33.2◦C. (c) Central wavelengths of the three spectral peaks plotted as functions of temperature. The error
bars were calculated using the standard deviations of 20 measurements. The dashed lines are linear fits.

FBG-reflected light was guided via an optical circulator to an
optical spectrum analyzer (AQ6370, Yokogawa Electric Corp).
We used a reflectometric (not transmissive) configuration to
reduce the influence of modal interference [36], [37]. The
POF was placed in a thermostatic chamber. As the temper-
ature accuracy of the chamber was not sufficiently high, a
thermocouple was placed near the POF-FBG to calibrate the
temperature. One end of the POF was connected to a silica
SMF outside the chamber using a butt-coupling technique [38],
and the other end was cut with an 8◦ angle to suppress the
Fresnel reflection. Note that the following experimental results
were highly repeatable as long as the alignment of the fibers
in the setup was maintained.

IV. EXPERIMENTAL RESULTS

First, we measured the optical spectrum of the FBG-
reflected light, as shown in Fig. 2(a). Though the spectrum of
the light Fresnel-reflected mainly at the SMF-to-POF bound-
ary was overlapped, it was clearly observed at ∼1560 nm.
Figure 2(b) shows the magnified view of the FBG-reflected
spectrum around its peaks. Multiple peaks and dips, caused
by the multimode nature of the POF [39], were observed in
the spectrum.

Subsequently, we measured the FBG-reflected spectra while
changing the temperature from 27.5◦C to 60.1◦C, as shown
in Fig. 3(a). At 27.5◦C, three peaks were observed at 1557.7,
1558.7, and 1560.4 nm in this range. With increasing temper-
ature, all these peaks moved to longer wavelength but with
different dependence coefficients. As some of the peaks were
buried by another peak, it was not easy to trace particular
peaks in this wide temperature range. The spectral dependence
on temperature in the narrow range from 27.5◦C to 33.2◦C
is shown in Fig. 3(b), The temperature dependence of the
peak at 1558.7 nm was almost linear, but at ∼33◦C, it
became non-observable because of the overlap with the peak
at 1560.4 nm.

Figure 3(c) shows the temperature dependence of the central
wavelengths of the three peaks. The temperature-dependence
coefficients of the peaks at 1557.7 and 1558.7 were
0.062 nm/◦C and 0.090 nm/◦C (coefficients of determination
R2: 0.995 and 0.993), respectively. The latter is ∼8 times
as large as that of a silica SMF-FBG (0.011 nm/◦C) [6]

Fig. 4. (a) Strain dependence of the POF-FBG-reflected spectrum. (b) Central
wavelengths of the two peaks plotted as functions of temperature. The dashed
lines are linear fits.

and almost the same as that of a PMMA-POF-FBG
(0.088 nm/◦C) [19]. In contrast, the peak at 1560.4 nm
was almost constant while the temperature increased from
27.5◦C to ∼50◦C. When the temperature increased to ∼60◦C,
the peak exhibited a clear upshift, and the linear fit in the wide
temperature gave a dependence coefficient of 0.0076 nm/◦C
(R2 = 0.777), which is much smaller than those of the other
peaks.

Finally, as shown in Fig. 4(a), we measured the strain depen-
dence of the FBG-reflected spectrum including the two peaks,
one of which is dependent on temperature (at 1558.7 nm)
and the other is not largely dependent on temperature (at
1560.4 nm). Strains from 0% to 0.5% were applied to a
10-cm-long section including the FBG. With increasing strain,
both of the peaks shifted to longer wavelength. The strain
dependence of the central wavelengths of the two peaks is
shown in Fig. 4(b). Another peak sometimes appeared near the
two peaks, but we traced the initial two peaks by continuous
observation. The dependence was almost linear for both peaks,
and the coefficients were almost the same (11.2 nm/% at
1558.7 nm and 11.3 nm/% at 1560.4 nm; these values are
smaller than previously reported value [22], [28], [35], but
it is not unnatural considering that the previous report esti-
mated the Bragg wavelength using some unique demodulation
methods [28], [35]; their R2 values were both ∼0.998).
These results indicate that highly accurate discrimination of
strain and temperature is potentially feasible by simultaneously
employing the multiple peaks (i.e., the temperature-dependent
and strain-dependent peak and the temperature-independent
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but strain-dependent peak) of the POF-FBG-reflected spec-
trum. Note that the spectral peak at 1557.7 nm had a strain
sensitivity of 12.2 nm/%, which is slightly higher than those
of the other two peaks, but it suffered from a relatively low R2

value of 0.971. This indicates that there is a trade-off relation-
ship between the temperature range and the measurement pre-
cision. One advantage of this method is its simple calculation
procedure (i.e., strain information can be directly obtained),
in which we do not need to use matrix-based discrimination of
strain and temperature [40]–[43]. The achievable temperature
range is limited by the overlap of two spectral peaks, but it
can be extended to up to ∼50◦C, if we permit a lowered
measurement precision.

V. CONCLUSION

The temperature dependence of the POF-FBG-reflected
spectrum was experimentally measured. As the temperature
increased, all the spectral peaks shifted to longer wavelength
with different coefficients. The temperature coefficient of one
of the clearest peaks was 0.09 nm/◦C (within a limited
temperature range below ∼33◦C), which was 8 times the value
of a silica SMF-FBG and almost identical to that of a PMMA-
POF-FBG. In contrast, one of the peaks showed almost no
shift while the temperature increased to ∼50◦C. Both the
temperature-dependent and independent peaks showed identi-
cal dependence on strain, which indicates that highly accurate
discriminative sensing of strain and temperature may be pos-
sible by using both the peaks simultaneously. We believe that
our finding will greatly stimulate the FBG-sensing community.
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